If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2m^2-5m-19=0
a = 2; b = -5; c = -19;
Δ = b2-4ac
Δ = -52-4·2·(-19)
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{177}}{2*2}=\frac{5-\sqrt{177}}{4} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{177}}{2*2}=\frac{5+\sqrt{177}}{4} $
| 2m^2-5-19=0 | | 6a=9a^2 | | 3=0.014x^2-1.12x+28.24 | | 5-5(3x-2)+3x=5-15x-10+3x=18x-5 | | 5.4=x/5 | | 21+10x=3x | | 5x+1/6)+(2x+1/3)=2 | | n+1-3n=-5=n=1-2n | | 25x^2-5=31 | | 6y+2(y-3)=5(y+1)-4 | | 18-8m=(5m+3)-3m | | 85=-4x-5x+4 | | 12(x−28)=1+8x | | -2m+4m+5=3 | | 3(5x+9)=15x=27 | | 38=1+7a | | 12x-30=2x+9 | | 20=1,5*x+14 | | 5+2x=2(−x+4)−19 | | 0.5=0.85^n | | 0,5x^2-2x+1=0 | | 8x+11=9(5–x) | | 2^-1=0.85^n | | J(x)=2x+2 | | -12=4d+8 | | x/3+5=-6 | | x/3+5=^6 | | 10(2.7x+5)=10(1.3) | | f(8)=-18 | | 10x+5=4(2x+1) | | 27=-3p-6 | | 5x+14=x+54 |